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Abstract. It is argued that the field of a charge in a stationary orbit co-rotates with the 
charge about the centre of mass. Such a field has no radiation term. It is obtained by 
transformation from the co-rotating frame of reference; direct calculation would require 
that the constitutional properties of the medium be known, these being such as to curve light 
rays. For rotating reference system Corum’s tetrad field is employed, the object of 
anholonomity affecting the derivation of fields from potentials. The force between the 
charge * e  of positronium is found to be (1 -p2) ’ / ’  e 2 / r i 2  when the charges follow with 
velocity o x r (= pc) a stationary circular orbit of diameter r12 (= 2r). 

Stationary orbits are selected by Bohr quantisation of canonical angular momentum. A 
quadratic equation is obtained for yp and for r12, where y = (1 -p2)-1/2. One solution 
gives the well-known ‘atom-like’ states. The other gives ‘particle-like’ states for which 
orbital motion is ultrarelativistic ( y p  = n /a ,  where a = 1/137), orbital diameters are small 
compared with eZ /mc2  ( z d ) ,  m being the electron mass, and energies are 2amc2/n,  small 
compared with mc2. In such a state positronium is termed a ‘positronium unit’. The unit has 
a very long lifetime for radiative transitions, and should possess a weak magnetic moment 
(p”  = cued/2n). If it is assigned half-integral orbital angular momentum (hence imaginary 
parity) it might be identified with the neutrino. 

A system in which two units orbit around a stationary charge has the properties of the 
muon, and a system with one orbiting unit has the properties of the charged pion. Spin, 
charge, rest energy and decay mode are explained in each case. The very different 
reactivities also can be explained. A system, ‘trionium’, in which two charges of one sign 
orbit about a central stationary charge of the opposite sign is explored. Again ultrarela- 
tivistic states emerge, but the energies differ inappreciably from the rest energy mc2 of the 
central charge. However, if one adds further pairs of charges in orbits of increasing radius, 
the magnetic coupling between orbital currents provides energies of order mc2/a.  It is 
speculated that such a system may afford a model for the proton. 

1. Introduction and general philosophy 

In the early years of this century physicists were confronted with an empirical 
classification of atoms based on their chemical reactivity -the periodic table of the 
elements. In addition, there was some spectroscopic evidence to be explained, chiefly 
the spectrum of the hydrogen atom and Moseley‘s law for x-ray lines. The key for the 
unravelling of this situation was provided by Rutherford when he proposed his 
electrodynamical model of the atom, and further crucial steps were taken by Bohr when 
he introduced the concept of stable orbits and thereby found at least a first-order 
explanation for the hydrogen atom spectrum. One wonders how long progress might 
have been delayed had not these steps been taken. Today one has an empirical 
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classification of particles, again based on reactivity, and something is known about the 
selection rules governing transitions between particle states. But the mass spectrum of 
the particles, and hence the reason for their existence, remains a mystery. The reason 
for the slow progress, I suggest, is the absence of dynamical models of the type that 
proved so fruitful for atomic physics. Heisenberg (1976) seems to have been moving 
toward the same conclusion, and after questioning the general philosophy of particle 
physicists advocated a return to dynamical considerations. 

Now of course the word ‘fundamental’ or ‘elementary’ is no longer strictly applic- 
able to particles in general. It is recognised that at least the majority are composite 
systems. In seeking dynamical models for these systems one requires elementary 
particles; only electrons and positrons, I believe, can fulfil this role. By implication only 
electromagnetic forces will be involved. The task, then, is to consider how electrons and 
positrons interact at close range. For two point charges e separated by distance r12,  the 
electrostatic potential energy e2/r12 exceeds the rest energy mc2 of either charge when 
r12<< d, where d = e 2 / m c 2  = 2.82 x lo-’’ m. Electromagnetic interactions in these 
circumstances may be said to be ‘strong’. Motion inevitably is ultrarelativistic, so that a 
theory capable of dealing with strong interactions is a theory valid in the ultrarelativistic 
extreme. 

It should be emphasised that quantum electrodynamics has not as yet been applied 
with any generality to strong interactions. The successes of the theory are entirely in the 
realm of weak interactions, for which the methods of perturbation theory become 
available. The conceptual problems that arise for strong interactions lie in the mixing of 
the positive and negative energy states. For a free electron there exists a representation 
for which the positive and negative energy states are separately described by two- 
component wavefunctions, and in the case of a weakly interacting electron a represen- 
tation giving the two-component wavefunctions can still be made; but for strong 
interactions it fails completely (Foldy and Wouthuysen 1950). Recently the autoionis- 
ation of positrons in collisions between highly charged nuclei (Muller et a1 1972a, b) has 
necessitated some consideration of strong interactions, albeit rather specialised. 

I take the attitude that classical field theory, to which the Wilson-Sommerfeld 
quantisation rules are added as boundary conditions, is the basic conceptual frame- 
work. Quantum mechanics and quantum field theory are viewed as formalisms for 
taking into account effects due to random fluctuations of electromagnetic radiation field 
pervading the universe at large. This subject, stochastic electrodynamics, has been 
receiving increasing attention in recent years. It shows every sign of providing a 
classical meaning for quantum theory. 

Stochastic electrodynamics probably has its origin in Welton’s (1948) proof that the 
radiative corrections of quantum electrodynamics can be obtained by superimposing on 
the motion of an electron in a local force field a further oscillatory motion due to a 
randomly fluctuating electromagnetic field. The strength and spectrum of this field are 
obtained by equating the energy density of the field to the quantum mechanical 
zero-point energy density-that is $hv with each standing wave mode of which there are 
87rv2 dv/c3 per unit volume in the frequency interval Y + Y +dv. The mean potential 
energy of the electron in the local field alters from V ( q )  to [l +:((Aq)2)Vz +. . . ]V(q ) .  
Interaction with the random field gives infinite energy, but the difference for two states 
of the electron is finite. Later Power (1966) showed that the radiative corrections also 
could be obtained as changes in the energy of the random field due to the presence of the 
electron system; the latter changes the refractive index of the medium, and the 
boundary conditions convert a change of light velocity into a frequency change. 
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Marshall (1963,1965) has probed more deeply by considering what sort of random field 
is in equilibrium with a distribution in phase space of charged classical oscillators 
subject to radiative damping. If the distribution is that of the ground state eigen- 
function of the harmonic oscillator, the spectrum of radiation is 4.rrhv3 dv/c3. For a 
mixture of excited state eigenfunctions appropriate for temperature T the radiation has 
the blackbody spectrum superimposed on the zero-point spectrum. For recent reviews 
of this subject see Boyer (1975) and de la Pena and Cetto (1979). The random field will 
necessitate a statistical averaging over classical particle trajectories. Concerning this 
subject see Feynman (1948), Motz (1962) and de la Pena-Auerbach and Garcia-Colin 
(1968). 

The random fluctuations of electromagnetic field pervading the universe are one 
phenomenon underlying the quantum mechanical formalism. Another is the discrete- 
ness of action in any measurement. In the old quantum theory a canonical trans- 
formation is used to introduce angle-action variables Q k  and J k ,  and since the Hamil- 
tonian is independent of Q k  in the case of multiply periodic motion, the Hamilton 
equations of motion yield immediately Jk = constants and Qk = constants. Writing 
Jk = nkh, where h is Planck’s constant and nk are integers, the discreteness of action is 
expressed. But up to this point classical electrodynamics deals with the motion of 
particles, and now there arises the question as to what constitutes a particle. Accepting 
that only electrons and positrons are elementary, the answer must be some sort of 
singularity in the electromagnetic field. Although action-at-a-distance formulations of 
electrodynamics may be possible, one deals fundamentally with a continuum of field 
energy. In a continuum discreteness can arise only in the form of standing wave modes, 
which in turn require boundary conditions. The Wilson-Sommerfeld quantisation rules 
must be introduced in the role of boundary conditions. 

Particularly revealing for the understanding of quantisation is the Bohm-Aharanov 
effect, whose interpretation still is controversial (Erlichson 1970). Let a beam of 
electrons of momentum p and energy E pass through a pair of slits at A and B and then 
strike a screen. What determines whether an electron will be detected at point P on the 
screen? Permitting a vector potential field A the answer depends on the integral 
$( p + e A / c )  * dl, where the closed path is PABP. For an electron to be detected this has 
to be an integral multiple of h ; because of the random field this condition does not 
determine P precisely, but only statistically. It is possible to change $A d l  without 
exerting any Lorentz force on the electrons, and when this is done P is found to vary. 
Thus properties of the medium must affect where the electron is detected; specifically, 
the detection process requires a boundary condition on the superimposed fields of the 
electron and of the medium, and changes to the latter thereby influence where the 
singularity is detected. 

The simplest system of electrons and positrons, positronium, will be considered in 
this paper in the light of a modified stationary orbit field. The classical electrodynamics 
of this simple system continues to be a topic for discussion; restricting attention to 
circular motion (as opposed to one-dimensional motion), much of the literature can be 
traced from papers by Schild (1963), Schild and Schlosser (1965,1968), Staruszkiewicz 
(1968), Synge (1972), Andersen and von Baeyer (1972), Bruhns (1973), Schild (1975, 
1976), Fahnline (1977), Kracklauer (1978), Stephas (1978) and Fujigaki and Kojima 
(1978). 

The two-body system highlights a problem which is general to relativistic mechanics. 
Given a system of particles with world lines X f k )  ( A ( k ) ) ,  where k specifies the particle, A ( k )  

is a parameter, and x i  are space-time coordinates, at what times does one consider the 
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positions of the particles when evaluating the momentum and energy of the system? If 
one locates the particles on the hyperplane of constant coordinate time x;b, = constant, 
where o is a particular particle (at rest relative to the observer), then it is not possible to 
have interaction between the particles as well as covariance of the world lines (Van Dam 
and Wigner 1966, Leutwyler 1965, Currie 1966). The reason is that the relative 
positions are not specified in an invariant manner. The problem can be avoided by 
abandoning the use of a universal coordinate time in favour of a universal proper time A .  
Instead of a single coordinate time and as many proper times as there are particles, one 
introduces a single proper time and as many coordinate times as there are particles. 
Treating the latter as independent variables like the position coordinates, interacting 
pairs of particles may be constrained to have null separation by means of a Lagrangian 
multiplier term in the action principle (Fahnline 1977). The number of independent 
variables in a relativistic canonical formalism then becomes 8N rather than 6N, but of 
course there are constraints such as o f k ) V i ( k )  = 1 (Dirac 1950, Rohrlich 1979). Also it is 
to be expected that spin effects are implicit in a relativistic theory. 

In this paper the primary concern is why an electron in a stationary orbit fails to 
radiate. Little attention seems to have been given to this problem, although the 
question of whether to assume a time-asymmetrical or a time-symmetrical field for 
charge 2 at the position of charge 1 has been much discussed (e.g. Driver 1963, Hill 
1967, Staruszkiewicz 1970). In other words, does charge 1 respond to the retarded field 
of charge 2 which at the same instant responds to the advanced field of 1 (time- 
asymmetrical interaction), or does charge 1 respond to the arithmetic mean of the 
retarded and advanced fields of 2 (time-symmetrical interaction)? Probably the 
interaction is time-asymmetrical or time-symmetrical depending on whether radiative 
reaction is included or excluded from the equations of motion (Browne 1969). In the 
time-symmetrical formulation the radiation field of the charge is cancelled by a field 
generated by the absorber (Wheeler and Feynman 1945). This may be the reason why 
the charge in a stationary orbit does not radiate, but there remains the question of what 
to assume for the resultant field. It will be suggested that the field is that which results 
from transformation from the co-rotating frame of reference. The field will be found by 
adapting a method due to Corum (1977, 1980). 

It will be concluded that the force between the charges of positronium is (1- 
p ) e / r f2 ,  where charges *e, each with velocity o x r  (=/?c), follow the same 
circular orbit of radius r and diameter r12 equal to the instantaneous separation of the 
particles for the centre-of-mass observer. The canonical angular momentum of the 
system is found to be 2rypmc(1 -U), where U = d / r I 2  with d = e2/mc2 and y = 
(1 -p2) - l / ’ .  After Bohr quantisation of the latter, a quadratic equation is obtained for 
either yp or U, or equivalently r12. One solution gives the familiar ‘atom-like’ states of 
positronium. The second solution gives new states, which might be termed ‘particle- 
like’. For the latter, motion is ultrarelativistic, orbital diameters are smaller than d by 
the same factor that the orbital diameters of the atom-like states are greater than d, and 
energies differ from zero (not 2mc2) by order mc2/137. This is not the first time a 
second solution has been obtained (Milne 1948, Sternglass 1961, 1965, Smith 
1965, Rrowne 1966), but the states now obtained differ radically from those found 
previously. 

In an ultrarelativistic state positronium is termed a ‘positronium unit’. Properties of 
the unit are examined in § 6. It is found to be extremely stable against radiative decay 
into photons, because the wavelength would be so much larger than the orbital 
diameter. Although uncharged, a small magnetic moment is found for the singlet state. 

2 1/2 2 



Rotating fields and particle-like states 60 1 

However, the spin of a unit may not be zero; there is reason to assign spin $ to  a unit, and 
the possibility of identifying it with a neutrino is considered. 

In 93  7 and 8 two further electron-positron systems are considered with a view to 
obtaining models for sub-nuclear particles. Preliminary investigations of the systems 
encourage the view that all matter may have an electron-positron structure. 

2. Rotating electromagnetic fields 

If a charge has uniform linear motion its field may be evaluated directly from the 
Lienard-Wiechert potentials, or indirectly by Lorentz-transforming the field measured 
in the rest frame of the charge. In the case of a charge following a circular orbit one 
might expect again to have the option of two methods for calculation of the field. If the 
direct evaluation again uses the Lienard-Wiechert potentials for a medium with 
rectilinear light propagation, the result will be found to differ from the field obtained by 
transforming the field measured in the co-rotating frame. There are now two possi- 
bilities for the field; which does one accept? 

This question underlies the Oppenheimer-Schiff paradox (Schiff 1939, Corum 
1977). Specifically, let a concentric sphere capacitor be charged and then rotated. If 
the rotation is with respect to an inertial frame, there arises outside the capacitor a 
magnetic field because the magnetic fields due to the rotation of the opposite charges on 
the two spheres do not quite cancel. On the other hand, if the rotation is induced by 
adoption of a rotating (i.e. non-inertial) reference system, then the external magnetic 
field does vanish; this follows because the transformation of coordinates cannot alter 
observables, and both the electric and the magnetic fields vanish for the inertial system. 
Schiff formally resolves the paradox in terms of the off-diagonal elements of the metric 
tensor for the rotating reference system. Corum uses a different type of rotating 
reference system, a tetrad field formed from the instantaneous rest frames of particles of 
an imaginary rotating fluid; such a reference system is anholonomic essentially because 
of the field of time scales in use, and the object of anholonomity plays an essential role in 
obtaining the result B = /3 X E, which suffices to resolve the paradox (since it implies 
that B vanishes when E vanishes). 

Thus there are two fields to consider when dealing with a charge in a circular orbit. 
Using the terms ‘rotating’ and ‘stationary’ to mean relative to one’s reference system, 
one must distinguish between (i) rotation of the charge with the background matter 
stationary, and (ii) rotation of the charge with co-rotation of the background matter. 
The fields of the charge differ for these two situations, as the Oppenheimer-Schiff 
paradox illustrates. I offer the hypothesis that when the orbit is stationary the field is of 
type (ii), not type (i) as currently assumed. The field in situation (ii) has no radiation 
term, whereas the field in situation (i) has such a term. 

The plausibility of the hypothesis can best be seen by treating the radiation field of 
an accelerated charge as a transverse disturbance in the Faraday tubes of flux that 
emanate from the charge. An argument due to Stokes for explaining the production of 
x-rays is particularly illuminating. Let a charge e initially have uniform velocity U, and 
at time tl  be brought to rest by large deceleration a lasting for time At. Let the rest 
position of the charge be Q. Initially the flux tubes co-move with velocity U. At a time 
tl  + t consider the configuration of a tube which makes angle 0 with the direction of the 
original motion (and deceleration). Out to distance r, where r = ct, the tube will have 
taken up the position appropriate for the new steady state, namely the charge at rest at 
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Q. Beyond distance r + c At the tube still has velocity u, and is directed toward a point 
Q‘, which is where the charge would have reached had the original motion continued. If 
the change in motion were instantaneous, the outward propagating disturbance would 
amount to two discontinuities in the direction of the tube at points A and C in figure 1, 

Figure 1. A B  represents the outward propagating disturbance to the flux tube QABP. Q is 
the rest position of the charge, and Q’ the position it would have attained had it not been 
brought to rest. 

the tube wrapping itself around a sphere of radius r for a distance AC. In reality the 
charge is brought to rest in the finite time At, and so the tube adopts the configuration 
QABP in figure 1. Since AC = QQ’ sin 8, where QQ’ = ut = aAtr /c  and BC = c At, we 
have AB/BC = ar sin 8 / c 2 .  This is the ratio of the transverse to the longitudinal field, 
and since the latter is e / r2  the former must be ea sin 8/rc2.  This is the radiation field 
caused by the change in motion of the charge. It falls off as l / r  rather than l / r 2  because 
the outer tube continues to move with the original velocity u for the delay time r /c ,  and 
the farther out the greater is the displacement incurred in this time. If the tubes were to 
have the configuration which results from transformation from the co-rotating frame of 
reference, transverse disturbances of the above type will not arise, but of course the 
tubes will be curved and light rays will be curved (Browne 1977a). Moreover, the 
retarded position of charge ez for the field at the position of el  will be affected by 
curvature of the light rays; the light ray from the retarded position of e2 to the present 
position of e l  passes through the centre of mass 0, which is what one expects 
instinctively but not what Schild (1963) has envisaged. 

It is possible to derive the full relativistically correct field for an accelerated charge 
without resort to the Lienard-Wiechert solution of Maxwell’s equations, and it is 
particularly instructive in the present context to do so. The argument is given by Page 
and Adams (1940), who develop the entire theory of electromagnetism from what they 
term the ‘emission theory’. ‘Emitters’ distributed over the surface of the electron are 
assumed to deliver streams of ‘moving elements’ which are disturbances propagating 
with the velocity of light c. Each emitter delivers its own stream of moving elements 
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rather as a machine gun delivers a stream of bullets. The locus of moving elements from 
a particular emitter, considered simultaneously for frame S, is a field line for S. Due to 
the relativity of simultaneity, events on a field line for S do not lie on a field line for 
another frame S’. The electric field E is the number of field lines per unit area normal to 
the field direction at the point in question. The magnetic field B is defined by 
B = c x E/c .  The entire theory of electromagnetism then follows from the relativistic 
kinematics of moving elements. 

Regarding the field of an accelerated charge, the essential steps in the argument 
briefly are as follows. Let element 1 leave an emitter at time to when the position of the 
electron is Q1, and let it propagate distance r to P1 reached at time to+r/c (= t ) .  Over 
the same time interval the electron moves distance u dto to Q2 where element 2 departs 
from the same emitter and has time to propagate to P2. Because the direction of the 
emitter may change, the velocities of the moving elements are c and c +dc, where of 
course c - dc = 0. We require to calculate P2P1 (= dl). Clearly 

d l = r c / c - u  dto-(c+dc)(r /c-dto)=(c-u)dt , - rdc/c .  (1) 

The number of field lines crossing unit area normal to c can be found from the 
relativistic aberration formulae, because the angular distribution of emitters is uniform 
in the instantaneous rest frame and the total number for a charge of strength e is 47re. 
The result is 

We require the number per unit area normal to dl, so that we divide by c * dl/c dl, 
bearing in mind that the field has the direction of dl. Then 

e ( 1 -  v 2 / c 2 )  
c dto (3) 

The term involving dc/dto gives the radiation field. In S two effects contribute to 
dc/dto: the changing angle of aberration, and the Thomas precession of the emitters. By 
considering the emission of the successive moving elements with respect to S’, the 
instantaneous rest frame when the first is emitted, one may eliminate the Thomas 
precession. With respect to S’ the velocities are c ‘  and c’+dc‘.  One requires that 
c’  + dc’ should transform into c” (= c ’ )  for the instantaneous rest frame SI’ when the 
second is emitted. This gives, to first order in the relative velocity of S” and S‘ divided by 
C’, 

c’+dc’ -a’  dtb c’ x (a’ x c ’) dtb 
C ‘  

c“ = ‘2 C’ + dc’ - 
1 - c’  - a’ dtblc 

Hence 

dc‘ldtb = c ’ x  (a ’  x c ’ ) / c ’ .  

(4) 

It remains to transform this equation to S. This can be done directly, or use can be made 
of a result due to Page (1929) for the rate of change of a vector with respect to a rotating 
frame. In the latter case one writes (5) as dc’ldtb = w ‘  x c ’ ,  where w ‘  = c’ x a’ lc ’ ,  and 
obtains with respect to S dc/dto = w x c, where w = (c  - U )  x a / ( c 2 -  u 2 ) .  When this 
result is inserted into (3), the field agrees with that evaluated from the Lienard- 
Wiechert potentials. 
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One notes the origin of the radiation field - the rate of change of the angle of 
aberration for a moving element with respect to an emitter, and the Thomas precession 
of the emitter. One notes also that the result (3) depends on rectilinear light rays. 

Knowing the field with respect to a frame S’ which is inertial in the rotational sense, 
one requires to calculate the field with respect to a reference system R which rotates 
relative to S’. For R we choose, following Corum (1977, 1980), a field of Lorentz 
frames which are instantaneously at rest relative to particles of an imaginary rotating 
fluid -a fluid which has rotational velocity field -p(r)c relative to S’. If (r’, 0‘, 2’) is a 
cylindrical polar coordinate system in S’, and t‘ coordinate time in S’, and if tangents to 
these coordinate curves define at each point an orthonormal tetrad of basis vectors 
e& = (a/&‘, S I r ‘ S B ’ ,  S/Sz ’ ,  SlcSt’),  then the non-inertial tetrad field R is obtained by 
rotation in the 0’-  t’ plane of the above tetrads through angle tanh-’ p. That is, 

and the dual l-forms are 

woL = (dr’, yr’ de’+  ypc dt’, dz‘, yc dt’+ ypr‘ de’). 
By use of 

dw ” = 2n&.4oP A w ’, 

one may evaluate the components of the object of anholonomity for the reference 
system, obtaining for the non-zero components 

Since Cl:, is the antisymmetric part of the affine connections, the electromagnetic field 
tensor f l j  is related to the 4-potential A’ by 

(10) 
The 4-potential A’ is obtained by Lorentz transformation of the 4-potential A” 

F.. V = A .  1.1 . -A. hJ , + 2Ri.Ak. 

appropriate for velocity -pc: 

Ae =YAL+YPQ’, Q = YQ’+ YPAL. (1 1) 
It remains only to substitute (9) and (11) into (10). With the help of 

(F14r F24,  F34)  -E, W 2 3 ,  F 3 1 ,  F12)  = -B, E’ = -V’Q’, B’ = V’ x A‘, 

one obtains 
(12) 

E, = y ( E ’ - p  X B’) , ,  B ,  = y ( B ’ + P  XE’),. (13) 
The result (13) is what would be expected for two frames with constant relative velocity. 
Now we have obtained it for the 4-potential(O, A;, 0, Q’)  with p an unspecified function 
of r’. It is remarkable that the terms involving S p l S r ’  are cancelled by terms arising 
from a : ~ ~  in (IO). 

A charge e which is at rest in S‘ has velocity pc in R. It is subject to the Lorentz force 

F = e (E  + p  x B )  = e ( l  -@’)E, (14) 
since (13) implies that B = p x E. This result will be of considerable importance. 
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Now consider positronium. Charges el and e2, each with rest mass m, follow with 
velocity w X r  a circular orbit of radius r. It is assumed that the charges occupy 
diametrically opposed positions at any instant in the rest frame of the centre of mass, so 
that the separation between the charges is the orbital diameter (r12 = 2r ) .  In general the 
charges might follow confocal ellipses, the centre of mass 0 being the common focus, but 
attention will be restricted to the case when the two ellipses degenerate into a single 
circle. 

S’ is the co-rotating frame with respect to which e l  and e2 are at rest. Their mutual 
attraction e1e2/r:2 is balanced by an outward gravitational force on each particle, the 
source of the gravitational field being the rotating background matter. With respect to S’ 
the 4-potential due to e2 at the position of el has the components (0 ,  0, 0, e 2 / r i 2 ) .  With 
respect to R the 4-potential will have components given by ( l l ) ,  namely (0, A@, 0, cp), 
where 

A0 = y l P l e ~ / r 1 2 ,  cp = y le~Ir12  (15) 

E, = y le2 /r&,  B, = - y l P l e ~ / r ? ~ .  (16) 

and the fields, obtained by putting E: = -e2/& and B’ = 0 in (13), are 

Note that the velocity entering into (15) and (16) is not that of the source charge e?, but 
rather the velocity of the field lines at the position of e l .  

The Lorentz force between e l  and e2, obtained by substitution from (16) into (14), is 

F = (1 -P:)1’2e1e2/r:2. (17) 

This will be recognised as the force between two charges with constant velocity in the 
same direction along parallel straight lines normal to the separation r12 of the charges - 
for example, the force between two charges attached to nylon threads which are being 
wound onto the same spool and whose separation is a vector normal to the threads. In 
the case of such linear motion clearly neither charge moves across the electric field lines 
of the other charge. The same will be true for circular motion when the field lines 
co-rotate with the charges about the centre of mass 0. 

3. interaction momentum and energy 

Let the fields ( E l ,  B1) due to charge el alone be superimposed on the fields (E2, B2) due 
to charge e2 alone, yielding resultant fields (E, B ) .  The energy density in the field is 
k(E2 +B2) ,  where k = (ST>-’. Since E = E l  + E2 and B = B1 + Bz, the energy density 
can be split into four terms. k ( E :  + B:)  contributes to the rest energy of charge e l ,  and 
k ( E : + B : )  to that of e2; indeed the rest energies may be wholly electromagnetic 
(Rohrlich 1960). The interaction energy is 2 k ( E 1  E2 + B1 B2). By use of 

E = - S A / c s t  -Vtp, B = V X A,  (18) 

the electrostatic interaction energy A WE and the magnetic interaction energy A WB may 
be expressed in terms of the potentials. One finds 

AWE = 2k( El - E2 d3x = -2k  ( Vcpl a E2 d3x = 2 k  Qlv 0 E2 d3x I 
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and 

AWB = 2k I B1 - B2 d3x = 2k V x A l  B2 d3x = 2k I A l  * V x B2 d3x I 
In (19) one assumes that cp1E2 vanishes on a boundary surface, and in (20) A l  x B2 is 
assumed to vanish on the boundary surface. Thus 

If one uses (15) for the potentials it follows that W = y2(1 +p:)ele2/r12. But the result 
is questionable because (18) is inconsistent with (10). 

The momentum density in the field may be treated similarly. The interaction 
contribution is (2k/c)(Ez x B1+ E1 x B2). Again with the help of (18) one finds 

Similarly, Ap2 = e2P2cpl(r2). Ap1 may be termed the ‘potential momentum’ of el in the 
field of e2, analogous to the potential energy of el in the field of e2. The sum of the 
potential momenta of e l  and e2 may vanish, but the ‘potential angular momenta’ add. 

Following the same steps, the interaction angular momentum is 

(2klc) I ~ x ( E z x B I + E I x B z ) ~ ~ x  = r l x A p l + r ~ x A p ~ + I ,  (23) 

where 

One notes that so far as the interaction angular momentum is concerned, the potential 
momentum can be considered to be located at the source of the B field, and the sum of 
the moments of the potential momenta of the charges equals the interaction angular 
momentum plus I. If q1B2  + p2B1 is an odd function of r, the term I will vanish. 

There exists a substantial literature on the question of interaction energy, momen- 
tum, and angular momentum. For action-at-a-distance formulation of relativistic 
mechanics the interaction contributions are required in order to avoid ‘no interaction’ 
theorems; for expressions in this approach see Dettman and Schild (1954), Schild 
(1963, 1975, 1976), Van Dam and Wigner (1965, 1966) and Currie (1966). A more 
direct and satisfying approach, that followed above, is to integrate the densities of the 
interaction quantities in the electromagnetic field, and this approach also has received 
widespread attention (Furry, 1969, Calkin 1966, 1971, Konopinski 1978, Stephas 
1978, Graham and Lahoz 1980). 
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4. Lagrangian 
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The basic equation of relativistic classical electrodynamics is 

d(ypmc)/dt = e ( E + p  x B ) ,  (25) 
which describes the motion of a charge e with mass m and velocity pc in an electric field 
E and magnetic field B. Radiative reaction has been omitted. In the case of circular 
orbits of positronium one substitutes the rotating fields (16) when the orbits are 
stationary. The interparticle force then is (17), and the equation of motion (25) is 

yp2mc2/r = y(1 -p2)e2/r:,. (26) 

U = dIrt2, d = e2/mc2 = 2.82 x cm (27) 

On defining 

and noting that r12 = 2r, one may reduce (26) to 

2y2p2 = U. 

If one assumes that the fields and the potentials are related by (18), not ( lo) ,  one 
may rewrite (25) in the form, 

dpldt = -eV(cp - p  A),  p = ypmc + eA/c. (29) 
To see this one notes that dA/c dt = SA/cSt + (p  V)A and then uses p x (V x A )  = 
V(p * A )  - (p  V)A. The inertial term in (29) incorporates interaction momentum 
eA/c as well as kinetic momentum ypmc (see equation (19)). Then the equality of 
action and reaction is assured, and hence the independence of internal and centre-of- 
mass motions (Breitenberger 1968). In the form (29) the equations of motion are the 
Euler-Lagrange equations for the variational principle, 

S L d t = O ,  L = -mc2(1 -p2)1/2+e(cp - p  a A). (30) I 
The Cartesian coordinate variables ( x ,  y ,  z )  and the momentum variables ( p x ,  p y ,  p , )  are 
canonically conjugate. 

If the potentials in (30) are as given by (15), the Lagrangian reduces to the simple 
form 

L = -mc2(1 - U ) ( I  -p2) l / ’ ,  (31) 
where U is given by (27). Introducing cylindrical polar coordinates (r, 8, z )  and the 
canonically conjugate momenta ( p r ,  p s ,  p , ) ,  one notices that L is independent of i. and of 
8. The independence of i. implies that one Euler-Lagrange equation is SLISr = 0, 
yielding 

2 p 2 = u ( 1 + p Z ) ,  (32) 
where one notes that SulSr = - (d / r?2) (Sr~~/Sr)  = --U/PIZ (since r12 = rt + r2) and 
Sp/& =@/re  Because L does not depend on 8, a second Euler-Lagrange equation 
yields the immediate integral 

= rypmc(1 - U )  =constant. (33) 

Whereas (33) is in agreement with / r  xpI =constant, where p is given by (29), the 
equation of motion (32) is in contradiction to (28). The reason, presumably, is the 
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assumption of (18) rather than (10) when proceeding from (25) to (29). This assump- 
tion also is made in obtaining the results (19), (20) and (22). 

One might argue that the Lagrangian (31) is but an approximation to 

L = -mc2 exp(-u)(l -p2)1'2. (34) 

rypmc exp(-u) =constant. (35) 

Then the equation of motion is indeed (28), but (33) becomes 

A Lagrangian similar to (31) and (34) has been investigated by Fujigaki and Kojima 
(1978). 

The Lagrangians (30), (31) or (34) are incomplete, however, without a field 
contribution. If one considers the total field of both particles, then the total Lagrangian 
should be SLZ? d3x, where 

2 ' = ( 8 ~ ) - ~ ( E ~ - B * ) - ( p c p  - j  .A) .  (36) 

Here ( j , p )  is the source 4-current density. Maxwell's equations follow from the 
variational principle S S LZ? d3x = 0 treating the components of the 4-potential (A, c p )  = 
A" as independent variables (e.g. Goldstein 1959). (r, t ) = x m  now behave as 
parameters which can be held constant for the variation-like A when the space-time 
curve x " ( A )  is varied for the particle Lagrangian. The variation yields 

In order to form the Hamiltonian density X, we require the variable canonically 

(38) 

conjugate to SA/cSt. This is 

B = SLZ?/S(SA/cSt) = -E/~T.  
Then 

X= B * S A / C S C - ~ =  ( ~ T ) - ~ ( E ' + B ' + ~ E  - Vcp)+ (pcp - j  * A).  (39) 
By use of V - (PE) = Vcp E + cpV E followed by Gauss's theorem and V E = 4 ~ p ,  
one finds that 

H = X d3x = ( 8 ~ ) - '  (E2  + B 2 )  d3x - j * A d3x. (40) I I I 
Now we superimpose the fields of charges el  and e2 in isolation. The terms 

k J (E:+ B:) d3x - J j 1  - A l  d3x provide the mechanical energy of el,  namely ylmc2 (see 
Rohrlich 1960). A similar origin is found for the mechanical energy of e2. For the 
interaction energy one obtains 

V = 2 k  ( E l * E 2 + B 1 * B 2 ) d 3 ~ -  ( j l . A 2 + j 2 * A l ) d 3 x  = (cp1p2-jl*A2)d3x, I I I 
(41) 

where use is made of (19) and (20). 
By substitution from (15) and use of jl = plpl, with p1 = elS(r - r l ) ,  one finds 

v = yl(1 -p:)ele2/r12 = -(I -p2)1/2umc2. 

w =2ymc2-(1 -p2)1'2umc2= 2(1 -fi2)1/2mc2, 

(42) 

(43) 

The total energy of the system is 
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where the equation of motion (28 )  has been used to eliminate U. This result agrees with 
that found from a Fokker action principle (Schild 1963, Andersen and von Baeyer 
1971, Bruhns 1973). Moreover, Dorling (1970) obtained this result for Dirac’s theory 
of the hydrogen atom. It is a consequence of the virial theorem. 

5. Bohr stationary orbits 

Accepting the equation of motion (26) or (28 ) ,  namely 

2 y 2 p 2  = U ,  (44) 

it is proposed to select stationary orbits by Bohr-quantising the canonical angular 
momentum for which we adopt expression (33). Then 

2rypmc (1 - U )  = n h, (45) 

remembering that the motions of the two charges are not independent. Introducing the 
fine structure constant a = e 2 / h c  = 1/137, one may write (45) as 

(46) 

Elimination of U between (44) and (46) yields a quadratic equation for yp with roots 

yp(  1 - U )  = nu/a,  
where one recalls that 2r = r12 and U = d/rlz.  

y p  = - (n/2a)[1* (1 + 2a2 /n2>1/2] .  (47) 

On the other hand, elimination of yp between (44) and (46) yields a quadratic equation 
for U with roots 

U (48) 

To first order in a’ one solution is 

y’p’ = a / 2 n ,  U ’  = a 2 / 2 n 2 ,  W‘ = 2(1 - p 1 2 ) 1 / 2 m c 2  = (2-az/4n2)mc2 (49) 

and the other solution is 

(50)  - y“p” = n / a ,  

In each case we have used formula (43) for the energies. The minus sign in front of y”p” 
merely means that the angular momentum in the field, the -ypu term of (46), is 
dominant; it can be eliminated by choosing the opposite sign for p or for n. 

The solution (49) describes the ‘atom-like’ states of positronium already familiar to 
us. Since yp << 1, orbital motion is nonrelativistic, and, since U << 1, orbital diameters 
are large compared with d.  Energies differ from 2mc2 by order a2mcz. 

The solution (50) describes new states, which will be termed ‘particle-like’. Since 
yp >> 1, orbital motion is ultrarelativistic, and, since U >> 1, orbital diameters are small 
compared with d ;  in fact, d is the geometric mean of the orbital diameters for 
corresponding (same n )  atom-like and particle-like states. Energies differ from zero 
(not 2 m c 2 )  by order amc’. 

In order to appreciate better the circumstances under which ultrarelativistic states 
arise, it is instructive to replace equations (44) and (46) by 

W”= 2(1 - p r r 2 ) 1 / 2 m ~ 2  = ( 2 a / n ) m c 2 .  u t r = 2 n 2 / a  2 , 

2 p 2  = ( k l -  k2p2)u, yp(1- k 3 u )  = nu/a,  (51) 

where k l ,  kZ and k 3  are numerical constants which take the values unity when (51) is 
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specialised to (44) and (46). Elimination of U leads to a quadratic equation for yP with 
roots 

yP = ( n / K a ) [ l * ( l -  k l K ~ ~ ~ / n ~ ) ~ ' ~ ] ,  (52) 

U = 2 ~ P / [ k i  + (ki - k d ~ P 1 .  

y'P' = kla/2n,  U '  = k la2 /2n2  (54) 

where K = kl - k 2  -2k3. The corresponding values for U are obtained from 

( 5 3 )  
To first order in a 2  the solutions are 

and 

The following comments may be made. The atom-like states (54) depend only on kl ,  
and not at all on k2  or k3. Thus magnetic interactions do not affect the atom-like states. 
Secondly, the orbital diameters of the particle-like states are of order a 2 d  when kl = k2 
and of order d when kl  # k2. Thirdly, only if K vanishes do the particle-like states not 
arise; when k l  = k 2  we have K = -2k3, and hence k3 must not vanish. In other words, 
the interaction angular momentum is crucial for the ultrarelativistic particle-like states. 

The ultrarelativistic particle-like states involve interaction energy which greatly 
exceeds rest energy. In the co-rotating frame we have e2/r12 >> mc2, implying r12<< d or 
U >> 1 (strong interactions). As mentioned in § 1, electrodynamics, either classical or 
quantum, is an untried theory in the realm of strong interactions. 

Electron spin has not been introduced explicitly. In quantum theory, spin effects 
emerge automatically from Dirac's relativistic wave mechanics; one may add Pauli spin 
matrices as an empirical extra to Schrodinger's wave mechanics, but it is superfluous 
and wrong to add them to Dirac's theory. In the case of classical electrodynamics one 
again expects spin effects to be implicit in fully relativistic equations. For example, it is 
not fortuitous that spin-orbit interaction is implicit in the Sommerfeld treatment of the 
relativistic hydrogen atom, the energy states being in exact accord with Dirac's theory. 
For this reason classical theories of electron spin of the Thomas type (Thomas 1927, 
Bargmann et a1 1959, Bacry 1962) are suspect, and so is the treatment of the 
electromagnetic two-body system with spin by §child and Schlosser (1965,1968). In all 
these theories a spin angular momentum tensor all and a spin moment tensor pi, (= ga,,) 
are introduced empirically. Corben (1961a) shows that the procedure leads to wrong 
results, and that it is necessary to choose g = 0. Spin effects are found to be implicit in a 
classical Zitterbewegung (Corben 1961b). Finally Corben (1962) shows that radiative 
reaction may be removed from the equations of motion by renormalisation of bLl and rit. 
This points the way to dispensing completely with the empirical az, (Browne 1970). For 
surveys of classical theories of electron spin see Nyborg (1962a, b) and Jackson (1976). 

Nothing has been said about vacuum polarisation effects which should dominate the 
scene when interaction is strong. Like spin, vacuum polarisation is a relativistic effect; 
the negative energy states arise automatically when Schrodinger's quantum mechanics 
is replaced by Dirac's. In classical electrodynamics the description of those effects 
which in quantum theory would be attributed to vacuum polarisation must also be 
implicit in relativistic equations. The field y ( r )  which multiplies the potentials (15) and 
field strengths (16) has all the characteristics of an electric permittivity and magnetic 
permeability (both equal) for the medium. It is of interest to recall how hole theory 
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alters the contributions to the energy of a free electron, as analysed by Weisskopf 
(1939). (i) Firstly, the energy in the electrostatic field, which diverges as l / r  in electron 
theory, diverges only as ln(d/ar)  in hole theory. (ii) Secondly, energy in the magnetic 
and the solenoidal electric fields, which vanishes in electron theory, diverges as l / r 2  in 
hole theory. (iii) Thirdly, the energy in oscillatory motion of the electron due to the 
zero-point field fluctuations diverges as l / r 2  in both theories. In hole theory the 
contributions (ii) and (iii) cancel to a logarithmically divergent term, and so the total 
energy diverges logarithmically. But the difference of the energy for two states of the 
electron is finite and gives rise to the radiative corrections. 

6. The 'positronium unit' 

Positronium in one of the ultrarelativistic particle-like states (50) will be termed a 
'positronium unit' or simply 'unit'. In this section the properties of such a unit are 
considered. 

From (50) one finds W" = 7.46n-' keV. Thus the spectroscopy of the ultrarela- 
tivistic states will be in the x-ray part of the spectrum. For example, 2-photon decay 
from the n = 1 state would yield quanta of energy 3.73 keV. A transition from the n = 2 
to the n = 1 state yields a quantum of energy 3.37 eV, differing from 3.73 eV due to 
recoil. But radiative transitions will be exceedingly improbable because the orbital 
diameter rr2 is very small compared with the wavelength. Comparing the probability of 
2-photon decay from the n = 1 ultrarelativistic state with that from the n = 1 nonrela- 
tivistic state, one expects a ratio (k"/k')3(rY2/r;2)2 = a l1 /16  = 1.96 x where k" 
and k' are the wavevectors for the emitted photons given respectively by hck' = 2mc2 
and hck" = 2amc2; the ratio of orbital diameters is obtained from (49) and (50) ,  namely 
rY2/ri2 = u ' / u ' '  = a4 /4 .  The probability of the 2-photon decay from the familiar 
atom-like state is known to be 8 x lo9 s-', and hence that from the particle-like state 
will be 1.6 x 10-15s-1. For comparison, the probability of a transition between the 
hyperfine levels of the ground state of the H atom is 2.85 X s-l; the transition is 
responsible for the chief spectral line at 21 cm in radio astronomy. 

Although electrically neutral, the positronium unit in the singlet state should have a 
magnetic moment p",  because the opposite spins of the electron and the positron imply 
parallel spin magnetic moments. No orbital moment arises, since the net orbital current 
vanishes. But it would be wrong to equate p" to two Bohr magnetons, because we deal 
with a situation in which interaction energy -e2/& greatly exceeds rest energy mc2. If 
one replaces the gyromagnetic ratio elmc by e/m"c, where 2m*c2 = 2mc2-e2/r?2 = 
-e2/r;2, then the magnetic moment would be 

(56) 

Here the angular momentum n h is associated with the unit. 
Another argument substantiates this result. When an explicit spin magnetic 

moment ip"  is assigned to charge 1, there will arise at the position of charge 2 a vector 
potential A = $ p " x  r;2/r$ in the co-rotatingframe. Due to charge 1, charge Zthen has 
'potential angular momentum' rr2 x eA/c = ept'/2cr;2. Equating the latter to i n h ,  one 
finds p" = nerY2/a, in agreement with (56). 

Angular momentum n h has been assigned to the positronium unit. But whether n is 
integral or half-integral remains to be decided. According to Beers (1972) the 
Wilson-Sommerfeld quantum numbers are integers only when the corresponding 

p"=  I(e/m*c)(nh)I = nerY2la = aed/2n. 
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coordinate is ignorable, and otherwise equal an integer plus one-half. Now n is the sum 
of the Wilson-Sommerfeld quantum numbers, and if only r is non-ignorable it follows 
that n should be an integer plus one-half. The angular momentum of the positronium 
unit would then be $ti in the state of lowest angular momentum. Regarding the 
half-integral values of n for the harmonic oscillator, see Boyer (1978). 

Half-integral angular momentum of orbital origin implies a state of imaginary parity 
(Roman 1964). The possible intrinsic parities for fermions are *1 and hi,  the reason 
being that successive space inversions amount to operation by the identity matrix, and 
for Dirac spinors the 4 x 4 identity matrix has eigenvalues *l (Roman 1964). But the 
parity of a fermion-antifermion pair always is -1. 

If the spin of the positronium unit is half-integral, there arises the possibility of 
identifying it with the neutrino. Depending on the sense of orbital rotation relative to 
that of p" (not hitherto specified), the neutrino may be of electron or muon type. That 
is, we would assign intrinsic parities +i and -i to the ve and v,, or vice versa. The parity 
of a y e ,  Fe pair, and also of a vcL, F, pair, would be -1 as required, the antineutrino 
having the same parity as the neutrino. Whether to regard the positronium unit as a 
neutrino as it stands, or as a system comprising an electron, a positron and a neutrino, 
remains an open question, however. 

The above model for the neutrino has the attractive consequence that a neutrino can 
interact electromagnetically due to its weak magnetic moment. If indeed all matter is 
built up solely from electrons and positrons, this would seem a necessary property of the 
neutrino. The model predicts a finite moment equal to a 2 / n  Bohr magnetons and a 
finite rest mass 2am/n for the neutrino. Experimental tests of these predictions may be 
devised, or more valuably of p"/m' '  which is independent of n. Recently experimental 
evidence for a finite neutrino mass has been reported tentatively, a value between 14 
and 40 eV being mentioned, but the uncertainties associated with such a measurement 
are still too great. Previously, only upper limits for the neutrino mass had been 
established - 0.6 MeVfor v, and 60 eVfor ve (Shrum and Ziock 1971). The predicted 
mass lies between 7.46 keV and 0 depending on the value of n. 

The consequences of assigning imaginary intrinsic parity to the neutrino deserve 
more detailed investigation. Assuming that the Hamiltonian for a system of particles at 
positions rk does not contain a term with the property V(-rk) = *iV(rk),  the real or 
imaginary character of the parity (parity class) would be a conserved quantity. Then, 
from the decay products of any composite particle, the parity class of that particle can be 
inferred unambiguously. It turns out, after a survey of the parity classes of particles, 
that charged fermions and neutral bosons have real parity, while neutral fermions and 
charged bosons have imaginary parity. Various decay modes consistently yield the 
same parity class. 

Of course identification of the positronium unit with the neutrino is a speculation. 
The ultrarelativistic states of positronium will exist whether or not one takes this step. 
Evidence in support of the identification comes from the argument in Q 7. 

7. The 'magnetium' system 

A system in which one or more positronium units orbit about a charge under spin-orbit 
force will be termed 'magnetium'. The simplest system, dynamically, comprises'two 
units orbiting at diametrically opposite positions (instantaneous positions in the centre- 
of-mass frame) around a stationary charge e located at the centre of mass 0. The 
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electric field of the central charge, E = ye/r2 (since it rotates and is therefore given by 
(16 ) ) ,  interacts with the electric dipole moment E" due to motion with velocity p c  of p" 
( E "  = p x p"). It is assumed that p" i s  normal to the orbital plane, and hence is a Lorentz 
invariant. Then E" is in the radial direction. The interaction energy V and the force F 
on a unit are given by 

V = E" * E + p" B, F = E T , E  + p'"V,B, (57)  

where one notes that B does not vanish since the field rotates (see (16)) .  From ( 1 6 )  one 
has B = p X E, and since E" = p x p" it follows that V = 0. But the force does not vanish 
provided that p ( r )  is treated as a field. Assuming that = P / r ,  we find the results 

v=o, F = ypp"e / r3 .  ( 5 8 )  

The force between the units can be neglected, being of order pfI2 which is small 
compared with erp". 

The equation for a circular orbit is 

y p 2 m f ' c 2 / r  = yppLrre / r3 .  (59)  

p 1'2r = d / 2 .  ( 6 0 )  

Since m" = 2 a m / n  and p" = aed /2n ,  this equation yields the simple result 

Bohr quantisation of canonical angular momentum yields 

2lr x ( y p m " c  + e A / c ) l =  Ch,  

where A = y p " x  r/r3.  Hence 

2 ypm"cr f 2e yp" /c r  = 4 ypml'cr = ri h,  

where use has been made of (59) in order to eliminate p".  By substitution from (60 )  one 
finds, with p = 1, 

( 6 3 )  
2 y = n i i / 4 a  . 

For the energies of these ultrarelativistic states one has 

w = 2 y m t 1 c 2 + m c 2 +  v = ( r i / a + 1 ) m c 2 .  (64 )  

Probably A'+: should replace 6, the new A'  being integral, because we deal with a 
fermion; the spin angular momentum of the central charge should be included on the 
right-hand side of (61 ) .  Then for n" = 1 the result (64 )  yields W = 206.5mc2. This is 
remarkably close to the rest energy of the muon, 206.8mc2. 

In regard to charge, spin, and rest energy the two-unit magnetium system seems to 
afford a satisfactory model for the muon. The decay of the muon also is explained. One 
of the positronium units in orbit around the central charge must be an electron neutrino 
and the other a muon neutrino; the reason being that the Pauli exclusion principle 
demands opposite spins, while attraction to the central charge demands parallel 
moments p". Hence the observed decay, ,U++ e+, CF, ve, is to be regarded as a simple 
decomposition into constituents. 

If only one unit orbits around the charge, the dynamics are somewhat complicated 
by the fact that the charge no longer is at rest at the centre of mass 0. If subscript 1 refers 
to the unit and subscript 2 tt, the charge e, then the vanishing relative to the 
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centre-of-mass frame of the linear momentum of the system yields 

ylPlm"c + y2~2mc +ey1p1lx r12/cr:2 = 0, (65) 

with cP1 = w x rl and cP2 = w x r2.  For attraction one requires that   er^^/&) - P1 x 
p"< 0 ,  which implies that PI - p" x r12 < 0 ;  hence the first and third terms of (65) have 
the same sign. The equation of motion expresses that the centrifugal force on either 
particle balances the interparticle force: 

ytp:mrfc2/rl = y1p1pf'e/r:2r1 = y2p2mc2/r2. (66) 

Since motion of both particles is ultrarelativistic, we have p1 = p2 = 1. Hence rl = r2,  so 
that the centre of mass is at the midpoint to a good approximation (despite the unequal 
rest masses). The equality of the centrifugal forces in (66) then implies that ylm"= 
y2m. The interparticle force in (66) is again obtained from (57), the gradient being with 
respect to rl .  Substituting for m" and for p",  one now finds 

p ' / ' r l  = d/4.  (67) 

Irl x ylPlmllc + r2 x y2~2mc + r21 x ( e y l p f t x  r12/crL)I = titi. 

Bohr quantisation of the canonical angular momentum now gives 

(68) 

The first two terms give ,equal contributions. The third term, after use of (65), gives a 
contribution equal to the sum of the other contributions. Hence (68) reduces to 

4y1plm"crl = t i t i ,  (69) 

y1 = nti/2a2. (70) 

w = ytm"c2+ y2mc2+ v = 2ylm"c2 = (2ti/a)mc2. 

which yields, with the help of (67) and p1 = 1, 

For the energies one finds 

(71) 

The state ti = 1 has energy 274mc2, which is close to the rest energy of the charged pion, 
273. lmc2. 

In regard to charge, spin, and rest energy the one-unit magnetium system affords a 
satisfactory model for the charged pions. The observed decay, ~ + + p + ,  vw, can be 
explained by the creation of a vw, Cw pair with retention of Fw and release of v w ;  the 
decay particle then consists of et, Y,, fiw, which is just the muon system according to our 
previous model. 

The 7ro  presumably is a combination of two one-unit magnetium systems, one with 
e- and the other with e+. One envisages a molecular-type complex; since the energy of 
the two non-interacting systems would be (4ti/a)mc2, the binding energy must be 
somewhat greater than (2ti/a)mc2. 

There remains the question of why the muon should be very much less reactive than 
the charged pion. The reason may be a closed shell in the case of the two-unit 
magnetium. Then the relationship between the muon and the charged pion becomes 
analogous to the relationship between an inert gas atom and a monovalent metal atom; 
the former is unreactive in comparison with the latter. The significance of closed shells 
of course is well known also in nuclear physics, the literature being traceable from a 
communication by Pauling (1965). 
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8. ‘Trionium’ 

A system in which two charges of one sign orbit around a central stationary charge of the 
opposite sign will be termed ‘trionium’. One envisages a common circular orbit for the 
moving charges which have diametrically opposed positions instantaneously for the 
centre-of-mass frame. In general the moving charges might follow confocal ellipses. 

Assuming co-rotating fields as given by ( 1 5 )  and (16) ,  the force which maintains 
each charge in orbit is 

(72)  2 1 / 2  2 F = ( 1  - p  ) (e / r 2 - e 2 / r : 2 )  = ( 1  -p2)1’23e2/r:2.  

The equation of motion, in terms of U = d / r I 2 ,  is 

2 y 2 p 2  = 3u. (73)  
Bohr quantisation of canonical angular momentum yields 

21r x (ypmc + e A / c ) l =  Ah, (74)  
where A is obtained by Lorentz transformation from the co-rotating frame in accor- 
dance with ( 1 1 ) ;  that is, 

A = YpQ’ ,  (75) 

y p ( l - U ) = A / f f .  (76)  

cp’ = -e / r  + e/rlz = -e/2r.  

Hence (74)  becomes 

Now one solves (73)  and (76)  for yp and U in the usual manner. Since these 
equations can be treated as a special case of ( 5 1 )  with kl  = k2 = 3 and k3 = 1 ,  the two 
solutions are given by (54)  and ( 5 5 ) ,  namely 

y ’ p ’  = 3a/2n,  U ’  = 3 a 2 / 2 n 2  (77)  

and 

y”p”  = n / a ,  = 2 n 2 / 3 a 2 .  

The energies of the states are given by 

w = 2 y m c 2 + m c 2 +  V, (79)  

where 

v = ( - 2 e 2 / r  + e2/r12)y(l  - p 2 ) .  (80) 

From (72)  one notes that V = 2rF, and hence V = -2yp2mc2 from the equation of 
motion. By substitution into (79)  one finds again 

w = 2(1 - p 2 ) 1 / 2 m c 2 + m c 2 .  (81)  
In the case of the ultrarelativistic states W = mc2.  Thus the ultrarelativistic states differ 
inappreciably from the rest energy of the central charge. 

The circumstances under which the result (81)  obtains have been examined by 
Andersen and von Baeyer (1971),  and see also Dorling (1970).  So long as we have 
V = 2rF with F = yp2mc2/r ,  it is clear that 2ymc2+ V = 2(1 -p2)lI2mc . 

In the case of trionium the orbiting charges provide a current 2 e ( w / 2 ~ )  = epc/.irr. 
The magnetic field due to this current evaluated at the centre of the mass is B = 2ep/r2 ,  
bearing in mind that y(0)  = 1 .  If one attributes to the central charge an explicit spin 

2 
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magnetic moment po, then the coupling energy would be poB = 2 e p o p / r 2 .  Essentially 
this is the type of interaction responsible for hyperfine splitting of spectra in the atomic 
domain, for which a classical treatment has been given by Ferrell (1960). But as 
discussed at the end of 8 5, spin effects should be implicit in fully relativisitic equations, 
whether classical or quantum. Consequently one might expect to find = 2ye2 / r ,  
which yields po= yer = ner /a .  The same result is obtained if one replaces the 
gyromagnetic ratio e lmc by e / m * c ,  where m*c2  = m c 2 - e 2 / r  (for the co-rotating 
frame); this was the procedure leading to (56). Now one finds P O =  ( e / m * c ) ( n h ) -  
- ner/ a. 

9. ‘The stick’ 

The term ‘stack’ refers to a system in which pairs of identical charges orbit around a 
central charge. The radii of the orbits increase because the orbital magnetic moment for 
inner orbits increases, giving adequate restraining force for looser orbits; the charges 
alternate in sign for successive orbits in the sequence, so that the net charge is always *e .  
Another way to describe the system is as follows. Consider trionium, with say central 
charge +e and orbital charges -e giving net charge -e.  Then introduce a pair of charges 
+ e  in orbit around the entire system and subject to the magnetic force e p  x B1 ,  where 
B1 is the magnetic field due to orbital motion of the trionium electrons; this force 
dominates. The additional pair of charges produces a larger orbital magnetic moment 
which can be used to couple a further pair of charges in an even larger orbit, and so on. 
Of course all orbits are assumed to be co-planar. 

Let the radii of successive orbits be r l ,  r 2 , .  . . , and let the magnetic moments 
associated with the orbits be pl ,  p2,  . . . . In the case of orbit 1, that of trionium, there is 
no explicit central moment; the spin moment of the central charge (denoted po above) is 
implicit. In the case of orbit 2 the central moment is that of orbit 1, namely p1. Hence 
the equation of motion for the charges in orbit 2 is 

( 8 2 )  
The second term on the right-hand side of (82 )  can be neglected for ultrarelativistic 
motion, since p = 1, and the first term can be simplified by using 

( 8 3 )  

yp2mc2 / r2  = lep x y p l / r i l  + y(1 - p 2 ) 3 e 2 / 4 r : .  

2 
p1 = (m1)(2ew1/277)  = ePlrl - erl .  

Then ( 8 2 )  reduces to 

( 8 4 )  2 r2 = r ld .  

Bohr quantisation of canonical angular momentum gives 

21r2x ( y p m c  + e A / c ) l =  nh,  A = - ype /2rz  f y p l  x r 2 / r ; .  ( 8 5 )  

Since the equation of motion yields ep l / r : c  = ypmc,  one may simplify (85) to 

/2r2 yp ( 2  - d / 2 r 2 ) /  = nd/a .  (86) 
When r2<< d / 4 ,  the quantisation condition (86) yields y = n / a  irrespective of the value 
of r2. 

The interaction energy essentially is that for trionium, with an additional term to 
represent the magnetic coupling between the orbital currents. One has 

(87) v = y(1 - p 2 ) ( - 2 e 2 / r 2 + e 2 / 2 r 2 ) - p l ( 2 p e / r ~ )  + ~ 2 .  
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The first term is essentially (80). In the second 2pe/r; is the field due to the outer orbital 
current, and c2 corrects for the non-dipole character of the inner orbital moment. 
Because of the virial theorem (which leads to formula (81)  for energy) we shall see that 
e2 is important. With the help of the equation of motion (82)  one proceeds to simplify 
expression (87)  for V in the usual manner; one finds 

(88) V = -2r2F = -2yp2mc2,  

where F is the restraining force. Hence the total energy is given by 

w = 2ymc2+ mc2+ v = 2(1 - ~ z ) ' ~ z m ~ 2 + m c 2 + ~ 2 .  (89)  

It remains to estimate E ~ .  The energy in the magnetic field due to two concentric 

(L11J:+ 2LzJ1J2 + L Z Z J : ) / ~ C ,  (90)  
where L,, are coefficients of self and mutual inductance. For the interaction energy one 
has 

circular currents J1 and J2 is 

where the permeability of the medium is taken to be y, and s12 is the distance between 
the circuit elements dl l  and d12. This well-known calculation yields 

2 sin2 cp - 1 lo ( 1  - A 2  sin2 p)'" dcpy 
L I Z  = 4 1 r c - ' y A ( r 1 r ~ ) ~ / ~  

where A = 4r1rz/(r1 + r2)'. The integral involves elliptic functions, but in the preeent 
case we have r2  >> r l ,  so that A 2  =4r1/r2<< 1 and hence we can approximate to the 
integral by expanding in powers of A '. This procedure leads to 

L~~ = 2,ir'c-l y(r:/rZ)(I  + 3rl/rz + . . . 1. 

A V  = 2ye2(rl/r:)(1 + 3r1/r2).  

€ 2  = 6ye2r:/r: = 6 ( r 2 / d ) n m c z / a ,  

(93)  

(94)  

(95)  

Since J1 = 2e(w1/27r) and J2 = - 2 e ( w 2 / 2 r ) ,  one finds 

Hence 

where use has been made of r; = rld and also y = n / a ,  a consequence of (86) .  Clearly 
the energy due to magnetic interaction of the orbital currents cannot be neglected. 

If one assumes that rl is the outermost trionium orbit with radius 3 a 2 d / 4 ,  then 
r2/d = 31j2a/2 and E~ = 5.2" . Proceeding outwards, successive radii in accordance 
with the recurrence relation (ri/d)' = ri -Jd work out to be as follows: ri/d = 1/25  000, 
1/158,  1/12.7,  1/3.5,  1/1.9,  1/1.4,  1/1.2,  l / l . l ,  etc. Thus for i = 5  one has r5=d/2 .  
Since A = 4rn-l/r,, = 4rn/d,  it is valid to assume A 2 c  1 only out to i = 3. The energy of 
the system arising from magnetic coupling between currents is € 2  + €3 + e4 + etc, but only 
out to about e3 can one rely on the approximation which yields (95).  Clearly, however, 
the coupling can produce energy comparable with that of the proton. 

Had we neglected the magnetic interaction energy one might simply have filled up 
the orbits of trionium, assigning a pair of identical charges to each orbit over the range 
of quantum numbers n = 1 to N. One notes from (78)  that the orbital radii decrease 
with n according to n-'. The energy contributed by a pair of charges in orbit n is simply 

2 

2 
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(a /n )mc2  according to (78) and (81). Thus the total energy of the stack would be 
( a  In N + l )mc2.  In principle N could tend to infinity, the orbital radii tending to zero. 
This would yield a logarithmic divergence, which would demand some sort of cut-off 
based on cosmological constants (see e.g. Browne 1962, 1976, 1977b). 

Clearly the stack has exceptional properties. One of these is likely to be a very high 
degree of stability; because the two charges in each orbit are identical (rather than 
particle and antiparticle), an internal annihilation of an electron and positron is 
unlikely. One wonders, therefore, if the stack might be a possible model for the proton. 
A considerably more detailed calculation will be required to evaluate the energy of the 
system. 

10. Concluding remarks 

The prospect of an electron-positron structure for all matter seems closer. Then only 
electromagnetic forces need be considered in particle physics. In this regard the very 
fact that many particles have energies close to a multiple of 137mc2 is significant, and 
the recently discovered upsilon meson, with spin 1, has energy very close to 
137’mc2 (= 9.60 GeV). In applying classical electrodynamics to situations where the 
interaction energy between charges greatly exceeds their rest energy, implying 
ultrarelativistic motion, one opens up a field of research which will require more 
thorough exploration. I should be surprised if the above development were free from 
error, but one cannot expect more when breaking completely new ground. 
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